Fluid Mechanics for Civil and Environmental Engineers
Ahlam I. Shalaby
Preference :
The study of fluid mechanics is important in numerous fields of engineering, including civil,
environmental, agricultural, irrigation, mechanical, aerospace, nuclear, chemical, petroleum,
biomedical, fire protection, and automotive engineering. The fundamental principles
of fluid mechanics include three basic units of study: fluid statics, fluid kinematics, and fluid
dynamics (Section 1.2). The physical properties/characteristics of a fluid system, along with
the fluid kinematics and fluid dynamics, will determine the type of fluid flow (Section 1.3).
The physical quantities of fluid flow (geometrics, kinematics, and dynamics) and the physical
properties/characteristics of fluids (mass density, specific gravity, specific weight, viscosity,
surface tension, vapor pressure, and bulk modulus) are expressed using four
primary dimensions (force or mass, length, time, and temperature) and a specific system
of units (metric or English) (Section 1.4). Most fluid properties vary with temperature and
pressure, while the acceleration due to gravity varies with altitude and thus atmospheric
pressure. As such, it is important to distinguish between two types of pressure scales
(Section 1.5), define the conditions of standard atmosphere (Section 1.6), and define the standard
reference for standard atmospheric pressure (Section 1.7). Furthermore, it is important
to highlight Newton’s second law of motion in the definition of the acceleration due to gravity
(Section 1.8) and to note that the dynamic forces acting on a fluid element include those
due to gravity, pressure, viscosity, elasticity, surface tension, and inertia (Section 1.9). And,
finally, the physical properties of fluids are presented in Section 1.10.
The fundamental principles of fluid mechanics can be subdivided into three units of study:
fluid statics, fluid kinematics, and fluid dynamics. Fluid statics deals with fluids at rest,
while fluid kinematics and fluid dynamics deal with fluids in motion. Fluid statics is based
upon the principles of hydrostatics, which yield the hydrostatic pressure equation. Fluid
kinematics is based upon the principle of conservation of mass, which yields the continuity
equation. And fluid dynamics is based upon the principle of conservation of momentum
(Newton’s second law of motion), which yields the equations of motion, known as the
energy equation and the momentum equation. The energy equation may alternatively be
based on the principle of conservation of energy (the first law of thermodynamics). Furthermore,
fluid dynamics also includes the topic of dimensional analysis, which yields the resistance equations.
environmental, agricultural, irrigation, mechanical, aerospace, nuclear, chemical, petroleum,
biomedical, fire protection, and automotive engineering. The fundamental principles
of fluid mechanics include three basic units of study: fluid statics, fluid kinematics, and fluid
dynamics (Section 1.2). The physical properties/characteristics of a fluid system, along with
the fluid kinematics and fluid dynamics, will determine the type of fluid flow (Section 1.3).
The physical quantities of fluid flow (geometrics, kinematics, and dynamics) and the physical
properties/characteristics of fluids (mass density, specific gravity, specific weight, viscosity,
surface tension, vapor pressure, and bulk modulus) are expressed using four
primary dimensions (force or mass, length, time, and temperature) and a specific system
of units (metric or English) (Section 1.4). Most fluid properties vary with temperature and
pressure, while the acceleration due to gravity varies with altitude and thus atmospheric
pressure. As such, it is important to distinguish between two types of pressure scales
(Section 1.5), define the conditions of standard atmosphere (Section 1.6), and define the standard
reference for standard atmospheric pressure (Section 1.7). Furthermore, it is important
to highlight Newton’s second law of motion in the definition of the acceleration due to gravity
(Section 1.8) and to note that the dynamic forces acting on a fluid element include those
due to gravity, pressure, viscosity, elasticity, surface tension, and inertia (Section 1.9). And,
finally, the physical properties of fluids are presented in Section 1.10.
The fundamental principles of fluid mechanics can be subdivided into three units of study:
fluid statics, fluid kinematics, and fluid dynamics. Fluid statics deals with fluids at rest,
while fluid kinematics and fluid dynamics deal with fluids in motion. Fluid statics is based
upon the principles of hydrostatics, which yield the hydrostatic pressure equation. Fluid
kinematics is based upon the principle of conservation of mass, which yields the continuity
equation. And fluid dynamics is based upon the principle of conservation of momentum
(Newton’s second law of motion), which yields the equations of motion, known as the
energy equation and the momentum equation. The energy equation may alternatively be
based on the principle of conservation of energy (the first law of thermodynamics). Furthermore,
fluid dynamics also includes the topic of dimensional analysis, which yields the resistance equations.
Content :
- Introduction
- Fluid Statics
- Continuity Equation
- Energy Equation
- Momentum Equation
- Flow Resistance Equations
- Dimensional Analysis
- Pipe Flow
- External Flow
- Dynamic Similitude and Modeling
Download Fluid Mechanics for Civil and Environmental Engineers free PDF
1 comments:
Write commentsYes i am totally agreed with this article and i just want say that this article is very nice and very informative article.I will make sure to be reading your blog more. You made a good point but I can't help but wonder, what about the other side? !!!!!!Thanks environmental chamber manufacturers
ReplyEmoticonEmoticon