Earthwork Calculation Excel Sheet

Earthwork Calculation Excel Sheet



Earthworks can be described as “the disturbance of land surfaces by blading, contouring, ripping, moving, removing, placing or replacing soil or earth, or by the excavation, or by cutting or filling operations”. Soil Disturbance – The disturbance of land surfaces by any means including blading, blasting, contouring, cutting of batters, excavation, ripping, root raking, excludes normal maintenance of legally established structures, roads, tracks, and railway lines. The definition also excludes those activities that are identified as vegetation clearance activities.


Download Earthwork Calculation Excel Sheet Free

LINK

RCC Stair Design Spreadsheet

RCC Stair Design Spreadsheet



In construction, the most important and appropriate part is reinforced concrete in comparison with all other components that exist in this sector. In this section, we are going to provide a newly designed excel sheet that is very much required to perform a design of the reinforced concrete staircase. This spreadsheet provides RCC Stair Design
with very simple steps




LINK

Design of Simply Supported Beam with Torsional Loading

Design of Simply Supported Beam with Torsional Loading



This spreadsheet performs a design analysis on a simply supported beam with torsional loading for a W10X54 steel beam (as defined by the AISC Steel Shapes Database). The application follows the design code and equations in AISC



LINK

Steel Beam Design Excel Sheet with Gravity Loading

Steel Beam Design Excel Sheet with Gravity Loading



The Steel Beam module does not permit biaxial loading at the present time, so there are two potential approaches to this loading scheme:
One option is to do two separate Steel Beam runs.  One run would apply the gravity loads to the beam with the beam oriented “web vertical”.  The other run would apply the wind loads to the beam with the beam oriented “web horizontal”.  This would require that the user manually combine the results of the two runs using engineering judgment to come up with a final result.



LINK

Reinforced Flat Slab Design Excel Sheet

Reinforced Flat Slab Design Excel Sheet 



Flat slab system is an important division of concrete floor system. A civil engineer must know all the aspects regarding the flat floor system. Here, we have tried to gather various reading materials available in the web about flat slab floor system in one place. These materials are originally located at different websites. A civil engineer should study these lectures and materials for structural engineering acumen.

A flat slab is a reinforced concrete slab supported directly by concrete columns without the

use of beams. The benefits of using flat slab construction are becoming increasingly recognized. Flat slabs without drops (thickened areas of slab around the columns to resist punching shear) can be built faster because formwork is simplified and minimized, and rapid turn-around can be achieved using a combination of early striking2 and flying systems. The overall speed of construction will then be limited by the rate at which vertical elements can be cast. Flat slab construction places no restrictions on the positioning of horizontal services and partitions and can minimize floor-to-floor heights when there is no requirement for a deep false ceiling. This can have knock-on benefits in terms of lower building height, reduced cladding costs and prefabricated services.

.



LINK

Concrete Pier (Isolated Deep Foundation) Design Based on ACI 318-14

Concrete Pier (Isolated Deep Foundation) Design Based on ACI 318-14 



Foundation elements are most commonly constructed of reinforced concrete. As compared to the design of concrete elements that form the superstructure of a building, additional consideration must be given to concrete foundation elements due to permanent exposure to potentially deleterious materials, less precise construction tolerances and even the possibility of unintentional mixing with soil.
.



LINK

Wind Analysis for Shade Open Structure Based on ASCE 7-16

Wind Analysis for Shade Open Structure Based on ASCE 7-16



In order for a structure to be sound and secure, the foundation, roof, and walls must be strong and wind-resistant. When building a structure it is important to calculate wind load to ensure that the structure can withstand high winds, especially if the building is located in an area known for inclement weather. The main wind force resisting system of a building is a vital component. While wind load calculations can be difficult to figure out because the wind is unpredictable, some standard calculations can give you a good idea of what a building can withstand. Wind loading analysis is an essential part of the building process. If wind loading analysis is not done correctly the resulting effects could include collapsed windows and doors, ripped off roofing, and more. Contact Buildings Guide for quotes on safe and durable prefabricated steel buildings.



LINK

Water Retaining Structures Analysis and Design

Water Retaining Structures Analysis and Design



Estimating labour requirements is one of the most important parts of estimating and costing the cost of labour. It is often more than half the cost of a job. An error in this area can be very costly to the workplace.
Labour costs depend on the time it will take to manufacture an item. To work this out, it helps to break the job down into the different steps required and then estimate the time it would take someone to complete each step.



LINK