Engineering Mechanics Statics
of engineering. Many of the topics in such areas as civil, mechanical, aerospace, and agricultural
engineering, and of course engineering mechanics itself, are based upon the subjects
of statics and dynamics. Even in a discipline such as electrical engineering, practitioners, in
the course of considering the electrical components of a robotic device or a manufacturing
process, may find themselves first having to deal with the mechanics involved.
Thus, the engineering mechanics sequence is critical to the engineering curriculum.
Not only is this sequence needed in itself, but courses in engineering mechanics also serve
to solidify the student’s understanding of other important subjects, including applied mathematics,
physics, and graphics. In addition, these courses serve as excellent settings in
which to strengthen problem-solving abilities.
The primary purpose of the study of engineering mechanics is to develop the capacity
to predict the effects of force and motion while carrying out the creative design functions
of engineering. This capacity requires more than a mere knowledge of the physical and
mathematical principles of mechanics; also required is the ability to visualize physical configurations
in terms of real materials, actual constraints, and the practical limitations
which govern the behavior of machines and structures. One of the primary objectives in a
mechanics course is to help the student develop this ability to visualize, which is so vital to
problem formulation. Indeed, the construction of a meaningful mathematical model is
often a more important experience than its solution. Maximum progress is made when the
principles and their limitations are learned together within the context of engineering
application.
to predict the effects of force and motion while carrying out the creative design functions
of engineering. This capacity requires more than a mere knowledge of the physical and
mathematical principles of mechanics; also required is the ability to visualize physical configurations
in terms of real materials, actual constraints, and the practical limitations
which govern the behavior of machines and structures. One of the primary objectives in a
mechanics course is to help the student develop this ability to visualize, which is so vital to
problem formulation. Indeed, the construction of a meaningful mathematical model is
often a more important experience than its solution. Maximum progress is made when the
principles and their limitations are learned together within the context of engineering
application.