Design of shear wall buildings
In the design of tall buildings, the lateral system that resists wind and seismic loading usually dominates the structural engineering effort; therefore, optimal lateral system design is important for material efficiency. In a shear-wall-based building, the conventional design process starts with an architect generating a floor plan, which is then passed to a structural engineer, who, based on knowledge and prior experience, tries to place shear walls to balance conflicting requirements: minimum structural weight, satisfactory structural strength and serviceability, conformity to architectural layout. This design process can be slow and inefficient, requiring a trial-and-error approach that is unlikely to lead to the best solution. The work presented in this paper intends to accelerate the process with an optimization system involving a ground structure program formulation, a modified evolutionary algorithm, and innovative computational techniques.